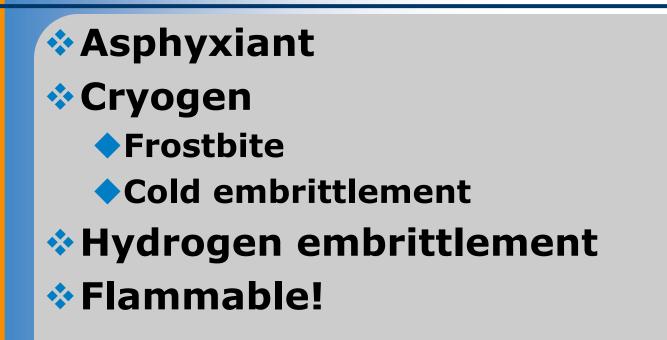
Containing Hydrogen Deflagrations

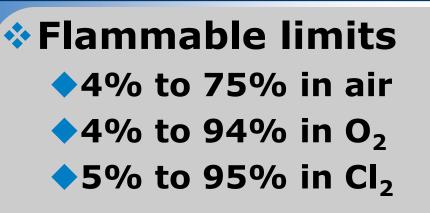
2017 Mary Kay O'Connor Process Safety Center International Symposium

Michael S. Schmidt

- Adjunct Professor, Missouri University of Science and Technology, Rolla, Missouri
- Principal,
 Bluefield Process Safety, LLC,
 St. Louis, Missouri


What we're covering

- The hazards of hydrogen, especially its flammability
- Hydrogen deflagration pressure, P_{EX}
- The meaning of "containment" as it relates to the MAWP of hydrogen vessels
- An example that applies these concepts


Hydrogen is Dangerous

Thank you, Captain Obvious

Ignition energy 0.02 mJ Compare to 0.29 mJ for methane 0.24 mJ for gasoline

Then why contain it?

Reactant

- ♦ Haber-Bosch: $N_2 + 3 H_2 \rightarrow 2 NH_3$
- Hydrogenation
- Hydrocracking
- Dealkylation and desulfurization

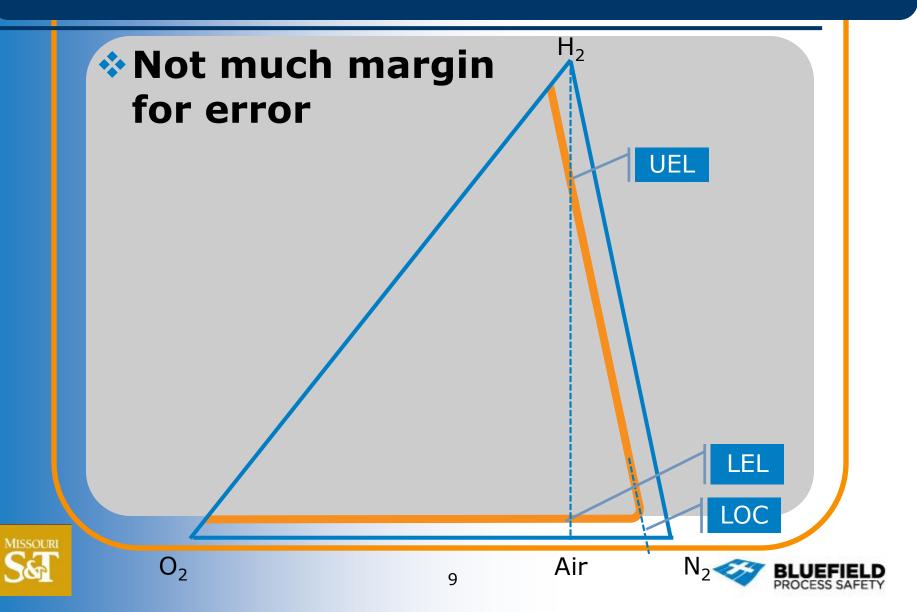
Product

- ◆ Reforming: $CH_4 + H_2O \rightarrow CO + 3 H_2$
- Electrolysis:
 - $2 \text{ NaCl} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{Cl}_2 + \text{H}_2$

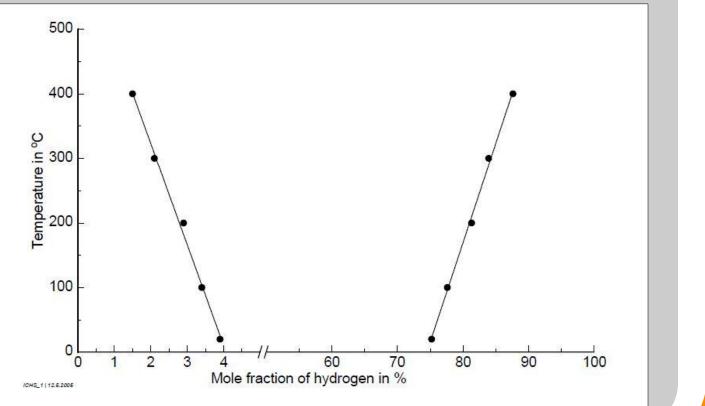
Fuel

What is a deflagration?

- Flame front propagates via heat transfer, bringing the material before the front to its autoignition temperature
- Flame front propagates at subsonic velocities

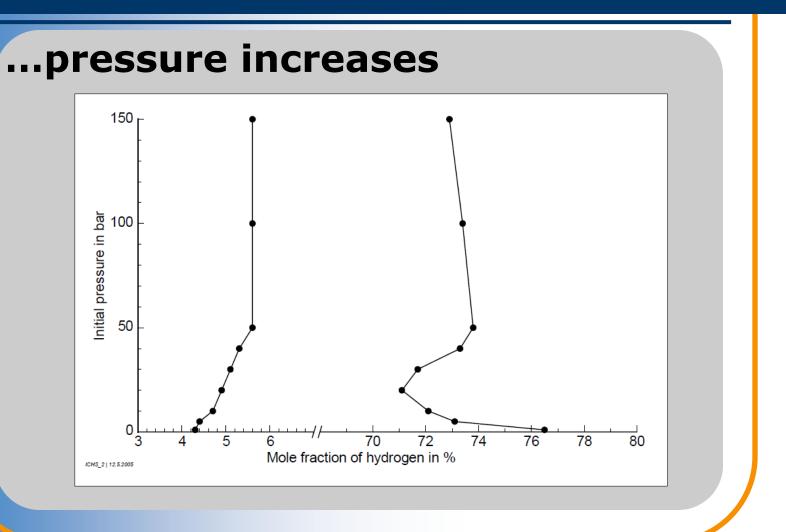

Avoiding harmful deflagrations

Avoid flammable mixtures Avoid ignition Contain the deflagration

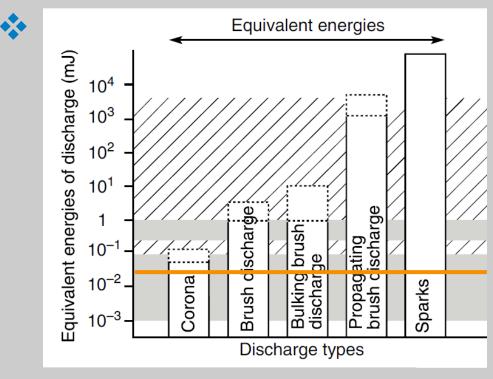


Avoid flammable mixtures?

Flammable limits widen...


... as temperature increases

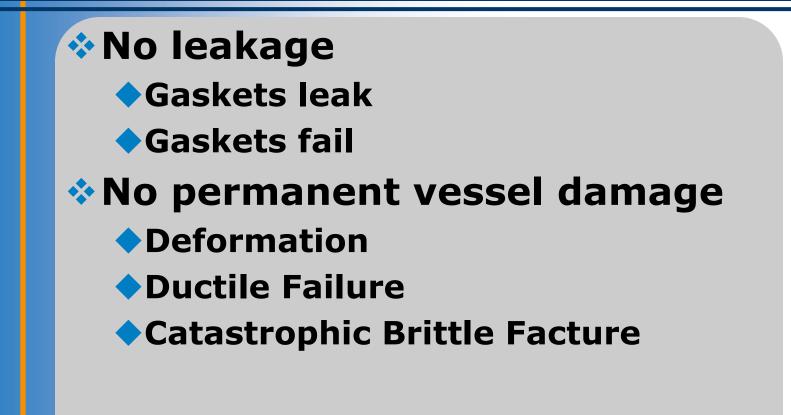
But narrow slightly as...



Avoid ignition?

Ignition energy for H₂ is 0.02 mJ

"Ignition is free"


Can deflagrations be contained?

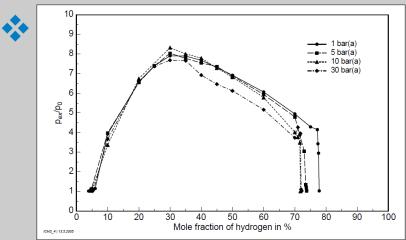
- Deflagration pressure, P_{EX}, is not infinite
- Two questions:
 - What will the P_{EX} of a deflagration be?
 - What vessel design pressure will contain the P_{EX} while resulting in no more harm than is tolerable?

What does containment mean?

What is the risk of overpressure?

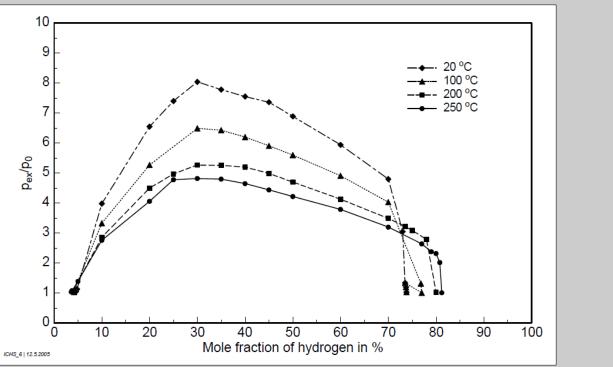
Overpressure	Probability of Catastrophic Vessel Failure	Probability of Gasket or Seal Failure	Most Likely Consequence
Up to 1.5 x MAWP	10-5	10-2	No permanent damage to vessel. Gasket leakage unlikely.
Up to 2.0 x MAWP	10-4	10-1	No permanent damage to vessel. Gasket leakage likely.
Up to 2.5 x MAWP	10-3	1	Likely permanent vessel deformation. Gasket failure.
Up to 3.0 x MAWP	10-2	1	Deformation leading to release. Gasket failure.
Up to 3.5 x MAWP	10-1	1	Ductile failure, but not catastrophic brittle failure
Over 3.5 x MAWP	1	1	Catastrophic brittle failure, resulting in fragment projectiles, shockwave

What will P_{EX} be?

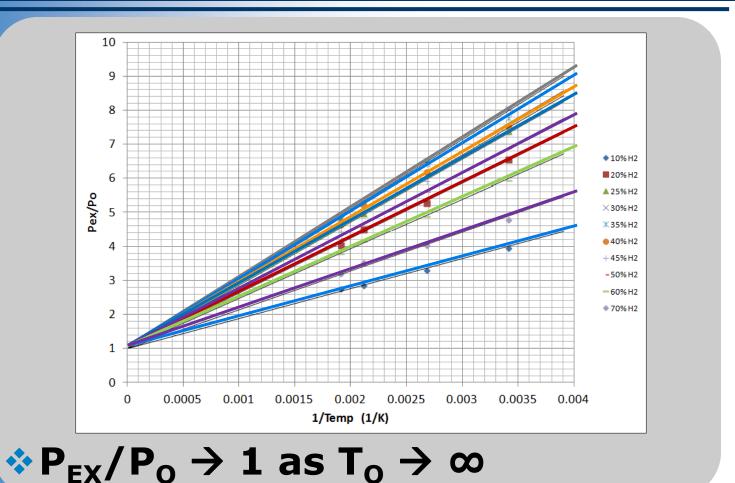

- Deflagration pressure, P_{EX}, depends on initial pressure, P_o
- Normalized deflagration pressure, P_{EX}/P_o, is independent of P_o
- P_{EX}/P_o, is a function of flammable mixture composition

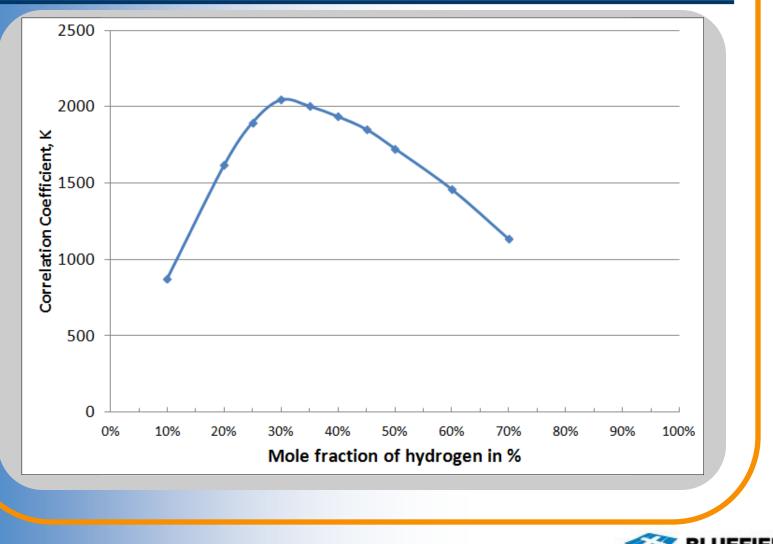
A function of composition

A stoichiometric mixture of air and hydrogen is 29.6 mol% H₂


Stoichiometric mixtures give peak P_{EX}/P₀ ◇ P_{EX}/P₀ = 1 at flammable limits

An unexpected dependence...


The hotter the mixture, the lower the P_{EX}/P_o


...suggesting $P_{EX}/P_O = f(1/T_O)$

$P_{EX}/P_{O} = 1 + K/T_{O}, K = f([H_{2}])$

MISSOURI

An example

- Dehydrogenation process yields aqueous solution and hydrogen
- Process runs at 40 C and slightly higher than 1 atm
- Hydrogen is vented and flared
- Plant lore says that any hydrogen deflagrations will be contained as long as it is designed to 50 psig MAWP

Tolerable consequences

- Plant lore says that any hydrogen deflagration will be contained as long as equipment is designed to 50 psig MAWP
- After deflagration event, however, equipment will need to be inspected and may need to be replaced
- No one recalls basis for criteria

50 psig MAWP vs. P_{EX}

- After deflagration event, however, equipment will need to be inspected and may need to be replaced"
- Suggests a P_{EX} of
 ◆2.0 MAWP → Gasket damage
 - $\rightarrow P_{EX} < 100 \text{ psig}$
 - OR
 - ◆ 2.5 MAWP → Vessel deformation → P_{Fx} < 125 psig

Assume peak P_{EX}/P_{O} (Stoichiometic)

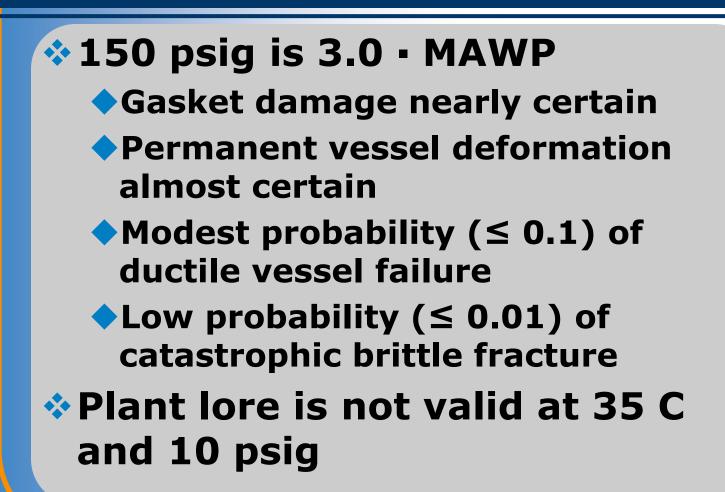
P_{EX} vs. 50 psig MAWP

◆ 99 psig vs. 2.0 • MAWP → May avoid gasket damage ◆ 99 psig vs. 2.5 • MAWP → Probably avoids permanent vessel deformation

Plant lore is valid AT 40 C and 0.3 psig (15 psia)

What if conditions change?

- * <u>Any hydrogen deflagration will</u> be contained as long as equipment is designed to 50 psig MAWP"
- Consider modest changes:
 - Increasing operating pressure from 0.3 psig to 10 psig
 - Lowering operating temperature from 40 C to 35 C


Again, stoichiometric P_{EX}/P_{O}

$$P_{EX}/P_0 = 1 + 2050 \text{ K}^{-1} / T_0
P_0 = 10 \text{ psig} = 24.7 \text{ psia}
T_0 = 35 C = 308 K
P_{EX}/P_0 = 1 + 2050 K^{-1} / 308 K
= 7.66
P_{EX} = 7.66 ⋅ P_0 = 164.4 \text{ psia}
= 149 7 \text{ psig}$$

P_{EX} vs. 50 psig MAWP

Designing to reduce risk

- Understand the consequences to avert
 - → Affects the multiple, N, of MAWP to use as basis
- Understand the normal and upset conditions at the point of deflagration
 - \rightarrow Affects the P_{EX} to use as basis
- ♦ Set MAWP to meet tolerable risk → MAWP ≥ P_{EX}/N

Summary

- While avoiding flammable H₂ mixtures is the first objective, once one forms, ignition is hard to avoid
- This can result in hydrogen deflagrations, overpressures that vessels may be able to contain
- Containment" must be defined in terms of tolerable consequences
- P_{EX}/P₀ is a function of [H₂] (peaking for stoichiometric mixtures) and goes down when operating temps increase

Acknowledgment

This work is almost entirely the result of analyzing data presented by Schroeder and Holtappels at the International Conference on Hydrogen Safety, held in Pisa, Italy in September 2005

