A Tale of Two Plants

Using LOPA for SIL Assignment

Mike Schmidt bio

- Principal of Bluefield Process Safety
- Formerly an Emerson SIS consultant
- Joined Union Carbide in 1977
- Began work in process safety, following tragedy in Bhopal in 1984
- Joined faculty at Missouri S&T in Rolla in 2009, teaching on safety and risk
- Work includes
 - Facilitating PHAs, LOPAs, RTC establishment
 - SIS conceptual design
 - PSM compliance

A Tale of Two Plants

Using LOPA for SIL Assignment

Presented by

 Mike Schmidt Bluefield Process Safety, LLC Chesterfield, Missouri
 Dan Kilpatrick CF Industries, Inc.

Yazoo City, Mississippi

Introduction

OCFIndustries

 Should SIFs with fixed SIL assignment be assigned to certain type of installations?
 Terra Industries

 Port Neal, Iowa
 Yazoo City, Mississippi
 Ammonium Nitrate Pumps

Ammonium nitrate pumps

Weak AN liquor – 20 to 60% AN Solution – 60 to 85% AN Melt – 97.5 to 99.9%

Typically centrifugal pumps

AN production disasters

- Oppau, Germany 561 fatalities Wed, 21-Sep-1921, 7:32 am
- Nixon, New Jersey 18 fatalities Sat, 1-Mar-1924, 11:30 am
- Tessenderlo, Belgium 189 fatalities Wed, 29-Apr-1942, 11:27 am
- Papua, New Guinea 11 fatalities Tue, 02-Aug-1994, 9:45 am
- Port Neal, Iowa 4 fatalities Tue, 13-Dec-1994, 6:13 am
- Toulouse, France 31 fatalities Fri, 21-Sep-2001, 10:15 am

BASF disaster in Oppau

Terra disaster in Port Neal

Hazards of ammonium nitrate

Stability of ammonium nitrate

- **Decreases** with
- Increased time
- Higher temperature
- Increased contamination
- Confinement
- Higher concentration
- Acidic pH
- Lower density

The Explosion Pentagon

Remains of a pump incident

Residual risk

Residual risk, hence SIL assignment, depends on

- Risk Tolerance Criteria (RTC)
- Event impact (consequences)
- Type and frequency of initiating cause
- Enabling conditions
- Other IPLs already in place

Risk tolerance criteria

Consequences

- One plant's team determined the probable impact in all cases to be one or more disabling injuries
- The other plant's team allowed different probable impacts, depending on the hazard
 - One or more disabling injuries
 - One or more fatalities
 - Ten or more fatalities

Initiating causes – ongoing

Initiating Cause	Frequency
Pump trip	1
Unit trip	1
BPCS function failure	e 0.1
Control valve fails in direction of design	0.1
Heat tracing failure	0.1

Opportunity-based causes

Initiating Cause P	robability
High-stress, non-rout	ine 1
Routine or low-stress	0.1
Failure to execute written procedure	0.01
Failure to execute procedure including independent review	0.001

Enabling conditions

Standard

- Time at risk
- Occupancy factor
- Ignition probability
- Vulnerability
- Others
- Weather conditions
- Operating levels
- Sensitizing contaminants present

Occupancy Factors

Occupancy	Factor
Personnel always preser	nt 1
In area 8 hr, 200 day/yr	0.18
In area 5 min/hr	0.08
In area 5 min/2 hr	0.04
In area 2 min/hr	0.03
In area 1 hr/month	0.0014

IPLs used in these projects

IPL	PFD AVG	
Procedural controls	0.1	
BPCS Functions	0.1	
Heat tracing	0.1	
Operator response to alarm o field condition, 20 min buffer	r 0.1	
Operator response to field condition, 40 min buffer	0.01	
Kickback (minimum flow) line	e 0.01	
Relief valve	0.01	
Self-draining pump	0.1	
		_

RRF distribution for AN pumps

Required RRF	Pumps
No additional required	50
$1 < \text{RRF} \le 10$	25
$10 < \text{RRF} \le 100$	15
◇100 < RRF ≤ 1,000	7
\$1,000 < RRF ≤ 10,000	5
Total number of pumps	102

New risk reduction measures

23

Conclusions

SIL assignment is not cookie-cutter

- What RTC is used?
- What are the initiating causes?
- What is the frequency of those initiating causes?
- What is the consequence of the event?
- What is the probability of enabling conditions?
- What safeguards are already installed? Which of them are IPLs?

