Overview of ISA 84 SIS for the Process Industries

Presented to ISA-St. Louis Section October 12, 2011

Mike Schmidt

- Principal of Bluefield Process Safety
- Formerly an Emerson SIS consultant
- Joined Union Carbide in 1977
- Began work in process safety, following tragedy in Bhopal in 1984
- Joined faculty at Missouri S&T in Rolla in 2009, teaching on safety and risk
- Work includes
 - Facilitating PHAs, LOPAs, RTC establishment
 - SIS conceptual design
 - PSM compliance

Key Points

Safety Instrumented Systems

SIS standards

Safety Lifecycle and Tolerable Risk

Layer of Protection Analysis

Controversies and Challenges

Overview of ISA 84 SIS for the Process Industries

Safety Instrumented Systems

What is an SIS?

What is a BPCS?

Basic Process Control System:

- Control system designed and used to control normal operations of the process
- Allows operators to start, stop, and modify the process to achieve production

What is the difference?

BPCS vs. SIS

- Intervene to take process to safe state
- No operator interaction
- Dedicated emergency response system

What is a SIF?

Example process

Example SIFs

SIFs in a SIS?

It is not uncommon for different SIFs to share field devices – sensors and final elements

Overview of ISA 84 SIS for the Process Industries

SIS Standards

Applicable Standards

- IEC 61508 Functional Safety of Electrical/Electronic /Programmable Electronic Safety Related Systems
- IEC 61511 Functional Safety: Safety Instrumented Systems for the Process Industry Sector
- ISA S84.01 Application of Safety Instrumented Systems for the Process Industries

What is IEC 61508?

"Functional Safety of Electrical/ Electronic/Programmable Electronic Safety Related Systems"

- A"generic" standard
- Applies to all industry sectors
 - Process Industries
 - Manufacturing Industries
 - Transportation
 - Medical

What is IEC 61511?

"Functional Safety: Safety Instrumented Systems for the Process Industry Sector"

- Exists as a standard under the umbrella of IEC 61508
- Targeted to the process industries
- Specifically for the "USERS" of safety instrumented systems

Requirements of IEC 61511

Three parts of IEC 61511

- 1. Part 1: Framework, definitions, system, hardware and software requirements
- 2. Part 2: Guidelines in the application of IEC 61511-1
- 3. Part 3: Guidance for the determination of the required safety integrity levels

Normative

Informative

What is S84.01

"Application of Safety Instrumented Systems for the Process Industries"

- Developed by ISA and adopted by American National Standards Institute (ANSI)
- Objective: to define requirements for Safety Instrumented Systems
- Goal: to provide uniformity in the field of instrumentation.

History of S84.01

Originally issued as ANSI/ISA-84.01-1996 Developed prior to work done by IEC Did not address the total safety life-cycle; assumed SIL was set ANSI/ISA-84.00.01-2004 harmonized with IEC 61511; identical with exception of "grandfather" clause

Grandfather Clause

A provision to allow safety systems built prior to the issuance of the 1996 standard: "For existing SIS designed and constructed in accordance with codes, standards, or practices prior to the issue of ANSI/ISA-84.01-1996, the owner/operator shall determine that the equipment is designed, maintained, inspected, tested, and operating in a safe manner."

Overview of ISA 84 SIS for the Process Industries

Safety Lifecycle and Tolerable Risk

Phases of the Safety Lifecycle

Analysis

- Concept
- Process Specification

Implementation

- Design
- Build
- Install
 - *Operation
 - Support

The Safety Lifecycle

ISA – St. Louis Section October 12, 2011

PROCESS SAFETY

Safety Lifecycle - Analysis

- 1. Process Design
- 2. Hazard Identification
- **3.** Risk Assessment
- 4. RTC Confirmation
- 5. Risk Reduction Allocation
- 6. Safety Function Definition
- 7. Safety Function Specification
- 8. Reliability Verification

Safety Lifecycle - Implementation

- 1. Mechanical/Electrical/Structural
- 2. Software Configuration
- **3. Equipment Build**
- 4. Factory Acceptance Testing
- 5. Construction/Installation
- 6. Site Acceptance Testing
- 7. Validation
- 8. Training
- 9. Pre-Startup Safety Review

Safety Lifecycle - Operation

- 1. Operation
- 2. Training
- **3.** Proof Testing
- 4. Inspection
- 5. Maintenance
- 6. Management of Change
- 7. Decommissioning

Hazard Identification

Before risks can be assessed, hazards must be identified

Hazards are identified during Process Hazard Analysis

The most common PHA in the process industries is the HazOp

BLUEFIELD PROCESS SAFETY

Risk Assessment

Consequence Analysis Likelihood Analysis

Consequence Analysis

Statistical Analysis

- Determined from loss experience in previous events
- Consequence Modeling
 - Determine extent of release
 - Determine effect zone for release
 - Calculate consequences based on extent and effect zone

Likelihood Analysis

Qualitative Analysis
Derived from PHA Team
Statistical Analysis
Event Tree Analysis
Layer of Protection Analysis
Fault Tree Analysis

But is the risk tolerable?

How much risk is too much?

ISA – St. Louis Section October 12, 2011

Required Risk Reduction

ISA – St. Louis Section October 12, 2011

What are SILs?

Safety Integrity Levels

Safety	Probability of	Risk
Integrity Level	Failure on	Reduction
	Demand (PFD _{AVG})	Factor (RRF)
SIL 4	10 ⁻⁴ > PFD > 10 ⁻⁵	10000 < RRF < 100000
SIL 3	10 ⁻³ > PFD > 10 ⁻⁴	1000 < RRF < 10000
SIL 2	10 ⁻² > PFD > 10 ⁻³	100 < RRF < 1000
SIL 1	10 ⁻¹ > PFD > 10 ⁻²	10 < RRF < 100

SIFs also have N/R (not rated) SILs

Overview of ISA 84 SIS for the Process Industries

Layer of Protection Analysis

Key Publication

2001 – Layer of Protection Analysis: Simplified Process Risk Assessment (CCPS)

So, what is LOPA?

Likelihood analysis linking: Frequency of initiating event (cause)

то

Frequency of resulting fault (consequence)

Through chain of enabling conditions and layers of protection, each with their own probability

The LOPA tree

Cause-Consequence Pair

Cause-Consequence Pairs

 Each LOPA scenario has one and only one cause-consequence pair
 Linked through frequency modifiers

 Enabling conditions

Layers of protection

Some Typical Failure Rates

Initiating Cause	Frequency (1/yr)
Pump trip	1
Seal or flange leak	1
Unit trip	1
BPCS control loop failure	0.1
Heat tracing failure	0.1
Tube leak-corrosive service	0.1
Control valve-opposite of design	0.01
Relief valve-spurious operation	0.01
Total packing failure	0.01
Lightning strike	0.001
Rupture of rotating equipment	0.001
Tube failure-mild service	0.001

Frequency Modifiers

- Must occur or be present before initiating event can lead to hazardous outcome
- May be either an ongoing state or a specific event
 - Ongoing states are always called enabling conditions
 - Specific events are sometimes called enabling events

Time at Risk

- Standard failure rates are based on continuous operation
- Many components are only
 - vulnerable to failure part of the time
- Time at risk takes this into account

Time at Risk – Examples

Unit is down for turnaround 15 days each year: $350/365 = 0.959 \rightarrow 0.96$ Weather is cold enough to freeze line 3¹/₂ months a year: $3.5/12 = 0.2917 \rightarrow 0.3$ Batch with 8.3 hour average cycle time is in raw material charge phase for 1.6 hours $1.6/8.3 = 0.1927 \rightarrow 0.2$

Occupancy Factor

- Safety impacts based on personnel being present to become victims
- In many operations, personnel are not always present
- Occupancy factor" takes this into account

Occupancy Factor – Examples

♦ Personnel always present: 1.000 \rightarrow 1

- In area 8 hours a day, 200 days a year:
 - $8/24x200/365 = 0.1826 \rightarrow 0.2$
- In area 10 minutes each 12 hour shift:
 - $10/60/12 = 0.01388 \rightarrow 0.01$
- In area one hour per month
 1/24/30 = 0.001388 → 0.001

Layers of Protection

Layers of Protection

...and more like a prison

IPL rules

In order to be considered an IPL, a safeguard must be & Effective & Independent & Auditable

Effectiveness

Does it act in time? Time to detect condition Time to decide Time to act Time to take effect When it works, does it prevent the outcome event? Is it enough?

Independence

Is the safeguard independent of

The initiating event and its effects?

The failure of any component of another IPL claimed for the same scenario?

Auditability

Can it be shown that

- It functions as designed?
- When it functions as designed, it prevents the hazardous outcome?
- Design, installation, functional testing, and maintenance testing are in place?

Example IPLs

Administrative controls	0.1
Blast wall/bunker	0.001
BPCS control loop	0.1
Dike/bund	0.01
Relief valve	0.01
Rupture disk	0.001
Spare w/auto start	0.1
Vacuum breaker	0.01

Overview of ISA 84 SIS for the Process Industries

Challenges and Controversies

Challenges and Controversies

- Best" architecture
- Proof testing
- BPCS loops
- **OSHA enforcement**
- Third party certification vs. proven-in-use
- Fault tolerance requirements

Architecture – what is it?

* One out of one (1001) * One out of two (1002) * Two out of two (2002) * Two out of three (2003) * "m" out of "n" (MooN)

 For sensors: M out of N vote to trip
 For final control elements: M out of N act on trip

Comparing architectures

Some common architectures

Architecture	Average Probability of Failure on Demand (PFD _{AVG})	Spurious Trip Rate (STR)
1001	$\lambda_{\rm D}T/2$	λ_{S}
1002	$(\lambda_D T)^2/3$	2λ _S
2002	$\lambda_{D}T$	$2\lambda_{\rm S}^2$ / ($3\lambda_{\rm S}$ + 2/T)
2003	$(\lambda_D T)^2$	$6\lambda_{\rm S}^2$ / ($5\lambda_{\rm S}$ + 2/T)

PFD_{AVG} and STR approximations, given component failure rate data

Proof test intervals

Impact of proof test interval

Proof Testing

Full loop needs to be tested

- As a complete loop
 - OR
- By component
- When testing by component, not necessarily at the same time or interval
- Combination of simulations and field tests

More than one BPCS function?

Two approaches—

- Conservative approach: Only one BPCS loop per logic solver; additional loops not independent
- Less conservative: Probable failure of BPCS loop failure is sensor or final control element. Logic solver much less likely to fail, so claim credit for more

Credit for Control System

Regardless of instruments

Component contribution

For two functions

How about three functions?

Taking credit for two functions

- Each BPCS function must have independent
 - Sensors
 - Input cards
 - Final control elements
 - Output cards
- BPCS functions involved in the initial failure count against the total of two functions

Only one function may be alarm

Adoption of S84.01 by OSHA

From OSHA Letters of Interpretation:

- * "As S84.01 is a national consensus standard, OSHA considers it to be a recognized and generally accepted good engineering practice for SIS."
- "OSHA does not specify or benchmark S84.00.001-2004, Parts 1-3, as the only recognized and generally accepted good engineering practice."

Some recent OSHA citations

- Citation for a willful act of failure to follow IEC 61511. Reversed on appeal
- Citation for failure to document that equipment in the process and safety control systems complies with RAGAGEP.
- Citation for each failure to ensure that burner management systems for five different pieces of equipment complied with RAGAGEP.
- Citation for inadequate frequency of inspections and tests of process equipment, including two SIS systems.

Summary

Whether they want to or not, instrument engineers are being charged with responsibility to:

- Operate and maintain SIS's in compliance with regulations
- Design and install SIS's according rigorous standards
- Establish risk tolerance criteria
- Assure hazard and risk assessments are done well

