Now What? After the LOPA is Done

2013 Mary Kay O'Connor Process Safety Center International Symposium

Presented by

 Safety Consultant, Bluefield Process Safety, LLC, St. Louis, Missouri

Michael S. Schmidt

 Principal, Bluefield Process Safety, LLC, St. Louis, Missouri

 Adjunct Professor, Missouri University of Science and Technology, Rolla, Missouri

Now What?

SIS Design: IEC 61511 or ANSI/ISA S84

- Confirm assumptions about IPLs made in LOPA remain true:
 - Effective
 - Independent
 - Auditable

♦ Mirror effort used for SIFs in SIS
♦ IPLs in LOPA → safety critical

What is safety critical?

- OSHA does not define "safety critical" in the PSM Standard
- Generally understood to mean "functions that protect against major hazards"
- Vague understanding leads to a variety of definitions, uneven distribution
- If everything is safety critical, nothing is safety critical

Features of "safety critical"

Limited to scenarios involving major hazards, *i.e.* catastrophic events

Applies to

- Safeguards that are relied upon to reduce risk of a major hazard to a tolerable level
- Components, the failure of which can trigger a catastrophic event

LOPA and Safety Critical

- Common features of "safety critical"
- Identifying scenarios that are candidates for LOPA
- Questions that LOPA answers
- Safety critical" some working definitions

Identifying LOPA Scenarios

Questions LOPA answers...

- ...when instrumented functions are proposed:
- Is the proposed instrumented function necessary to reduce risk to tolerable levels?
- If it is necessary, may it be a BPCS function, or should it be installed in an SIS?
- If it must be installed in an SIS, what SIL should be assigned?

Safety Critical – Definitions

- SC scenario: One that results in a fire, explosion, or toxic release that leads to a catastrophic impact.
- SC function: Any safeguard credited as an IPL that is required to reduce the risk of a safety critical scenario to a tolerable level or any component or procedure, the failure of which has been identified as the initiating cause of a safety critical scenario

Excess IPLs

- Any LOPA scenarios list more IPLs than are necessary to achieve tolerable risk – Are all safety critical?
- Three approaches
 - All are safety critical
 - Inherently safer design hierarchy
 - Choose those that are easiest (or cheapest) to implement and maintain

What to do?

"An organization must establish a system to periodically assess (audit) the elements (components and human interventions) identified as IPLs to ensure that the IPLs remain in service at the anticipated PFD."

> -Layer of Protection Analysis: Simplified Process Risk Assessment

What to do?

What should this "system" consist of? Three main parts

- Identify
- Maintain
- Document

Identify

- Go beyond creating a list kept by Engineering or Safety department
- Ensure all workers understand what is safety critical and why, including causes and consequences
- Greater awareness and understanding can change mindsets

Maintain

Ensure all functions are inspected, tested, and maintained to validate **RRF** assumed for each **IPL during LOPA** Above and beyond normal plant standard of care to differentiate and increase reliability of safety critical functions

Document

- Documentation of work done, training completed, and other data is especially important when it comes to safety critical functions
 - Verify that work/training is scheduled and has been completed
 - Measure and track progress
 - Record demands on safety critical functions

Safety critical functions

Three key characteristics of safety critical functions Four types of safety critical functions

Three key characteristics

- The hazard prevented, and how the function prevents it
- How personnel should respond to a demand on the function
- Inspection, testing, and maintenance requirements

Four types of functions

*SIFs

BPCS functions

Non-instrumented functions

Procedures and administrative controls

SIFs

BPCS functions

How it prevents the hazard

- Cause: What causes the BPCS function to experience a demand?
- Set points: What set points and conditions result in a demand?

Effects/safe action: What should happen when the BPCS function responds to a demand?

How personnel should respond

- Steps to take: What actions should personnel take when there is a demand?
- Incident report: Should an incident report be prepared when there is a demand?

Normal control functions may serve as IPLs and require no response or report

Inspection, testing, maintenance

- What should be tested?
- How should tests be done?
- How often should tests be done?
 What PM is expected?
- What is the method to schedule and issue work orders for inspection, testing, and maintenance?

Non-instrumented functions

How it prevents the hazard

- Cause: What causes the noninstrumented function to experience a demand?
- Set points: What set points and conditions result in a demand or need to be maintained?
- Effects/safe action: What should happen when the noninstrumented function responds to a demand?

How personnel should respond

- Steps to take: What actions should personnel take when there is a demand?
- Incident report: Should an incident report be prepared when there is a demand?

Some non-instrumented functions may serve as IPLs and require no response or report

Inspection, testing, maintenance

- What should be tested?
- How should tests be done?
- How often should tests be done?
 What PM is expected?
- What is the method to schedule and issue work orders for inspection, testing, and maintenance?

Procedures and admin controls

How it prevents the hazard

- Written procedures: Is the procedure written?
- Identity: Is the procedure identified uniquely by name, procedure number, and revision?
- Hazard: Does the procedure specifically identify major hazard it protects against?
- Steps of procedure: Are the safety critical steps identified?

Training

- Type of training: What kind of training is to be used?
- Understanding: How do personnel demonstrate their understanding of the training?
- Frequency of training: How often should personnel receive refresher training?

Audits

Procedures: Are the procedures actually followed? Training: Is the training as frequent as required and do personnel understand it?

Record retention: At least the last two audits, and most recent training records

Safety Critical Functions Manuals

Practical method of identifying, documenting, and ensuring the maintenance of safety critical functions

Two parts

- Report: outlines the scope of the manual, the purpose of the manual, and general instructions for the manual's continued use and upkeep
- Datasheets: Contains all information necessary to identify, document, and maintain each safety critical function

Safety Critical Functions Manuals

- Electronic and/or hard copy
- Manual for entire plant or for each unit within a plant
- All "safety critical" information in one place, including all major process hazards in a facility
- Often linked to other documents and software systems — links should denote "safety critical"

Summary

- Safety critical scenarios are LOPA scenarios with high consequences
- Safety critical functions are IPLs required to reduce risk of a safety critical scenario to a tolerable level
- Other components or procedures, the failure of which is the initiating cause of a safety critical scenario, are also safety critical.
- All safety critical functions, not just SIFs, need to be identified, documented, and maintained

