Tell Me Again, Why Am I Deciding Our Risk Tolerance Criteria?

Presented to ISA-Kansas City Section Thursday, March 10, 2016

Mike Schmidt

- Principal of Bluefield Process Safety
- Formerly an Emerson SIS consultant
- Joined Union Carbide in 1977
- Began work in process safety, following tragedy in Bhopal in 1984
- Joined faculty at Missouri S&T in Rolla in 2009, teaching on safety and risk
- Work includes
 - Facilitating PHAs, LOPAs, RTC establishment
 - SIS conceptual design
 - PSM compliance

Topics for today

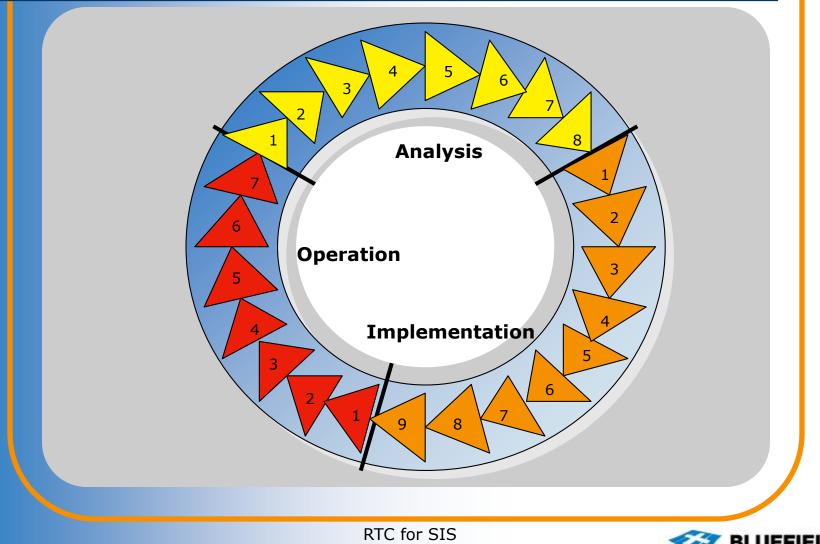
- New responsibilities that have fallen to I&E engineers
- Getting PHAs right
- Need for risk tolerance criteria
- How to establish RTC

New responsibilities for I&E

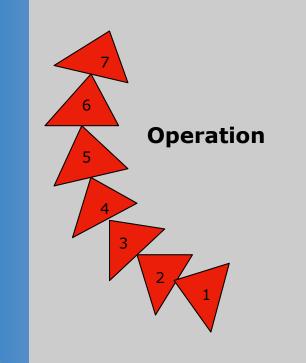
Whether they want them or not, I&E engineers are being charged with responsibility to:

- Operate and maintain SISs in compliance with regulations and standards
- Design and install SISs according to rigorous standards
- Establish risk tolerance criteria
- Assure hazard and risk assessments are done we

assessments are done well


The SIS Standards

ANSI/ISA 84.00.01 Ed. 2 (2004) IEC 61511 Ed. 1 (2003, Ed. 2 in 2016) IEC 61508 Ed. 2 (2010)


All call for addressing the safety lifecycle

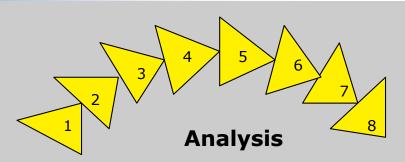
What is the Safety Lifecycle?

SLC—Operation

- 1. Operation
- 2. Training
- **3.** Proof Testing
- 4. Inspection
- 5. Maintenance
- 6. Management of Change
- 7. Decommissioning

SLC—Implementation

- 1. Mechanical/Electrical/Structural
- 2. Software Configuration
- **3. Equipment Build**
- 4. Factory Acceptance Testing
- **5.** Construction/Installation
- 6. Site Acceptance Testing
- 7. Validation
- 8. Training
- 9. Pre-Startup Safety Review


Implementation

2

3

SLC—Analysis

- **1.** Process Design
- 2. Hazard Identification
- **3.** Risk Assessment
- 4. RTC Confirmation
- 5. Risk Reduction Allocation
- 6. Safety Function Definition
- 7. Safety Function Specification
- 8. Reliability Verification

Steps before working on an SIS

- Assess risk, which has two components: consequence and likelihood. Both require assessment.
- Before risks can be assessed, hazards must be identified.
- Hazards are identified during a PHA.
- HazOp is the most common form of PHA in the process industries

Identify hazards

Hazards are identified during a PHA. HazOp is the most common form of PHA in the process industries

Steps of the HazOp method

Performed node-by-node Considers defined deviations Considers causes of deviations Considers consequences of deviations Identifies safeguards to protect against causes and consequences Assesses risk Makes

recommendations

HazOp: Deviations

Use a standard list of deviations

Mark "N/A" when the parameter has no meaning for the node, or when a limit does not exist

Mark "NCOI" (No Cause of Interest) when a limit exists, but there is no conceivable way to exceed the limit

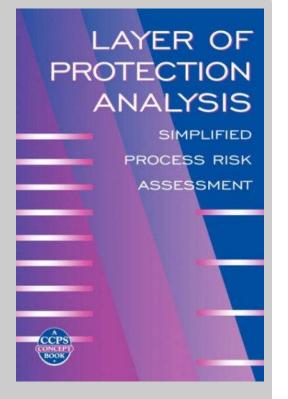

HazOp: Causes

- Faults (equipment failures or human errors), not other deviations
- The failure of a safeguard is not a cause; something else must first cause the deviation
- No "Double jeopardy" exemption; multiple failures reduce likelihood, but do not make impossible

HazOp: Consequences

HazOp: Safeguards

- Typically reduce likelihood of events (Preventative)
- Occasionally reduce severity of impacts (Mitigative)
- List everything that helps, not just IPLs per LOPA
- Exception: Do list protective functions that are based on something that has been identified as the cause

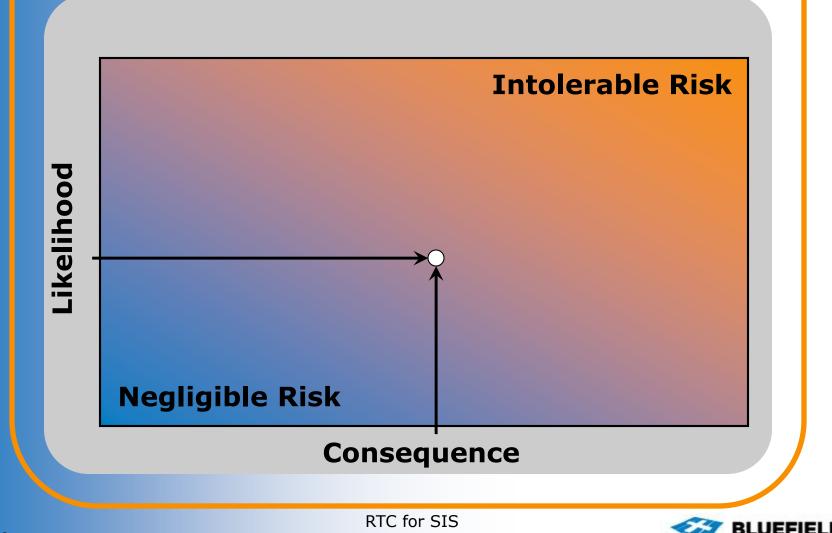

HazOp: Risk Assessment

- Two parts: consequence (impact) and likelihood
- "Worst case" vs. Likely case
- Risk assessments by HazOp teams:
 - Good at estimating events
 - Passable at estimating impacts
 - Terrible at estimating likelihood
- Match likelihood to consequence

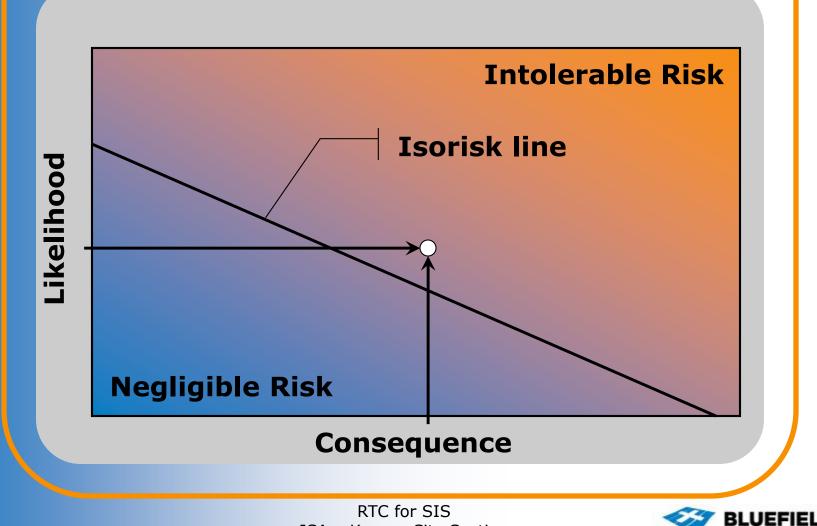
Estimating likelihood

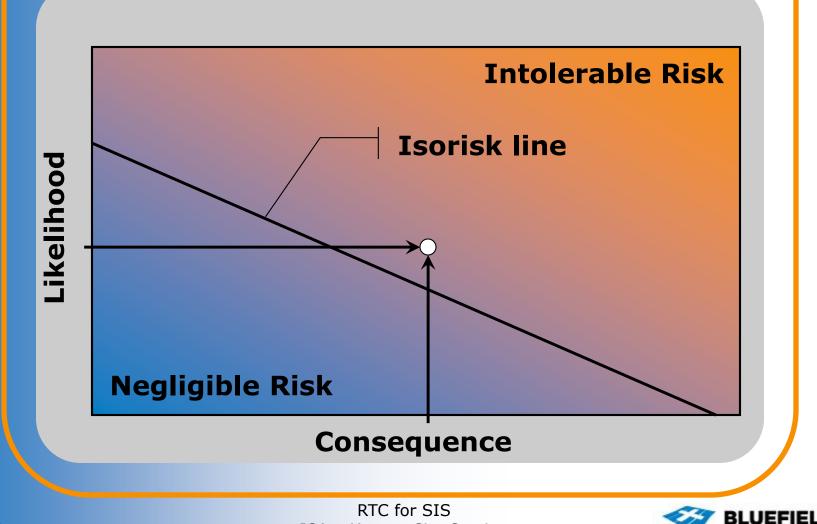
- Fault tree analysis (FTA)
 Event tree analysis
 Markov modeling
- Layer of Protection Analysis (LOPA)

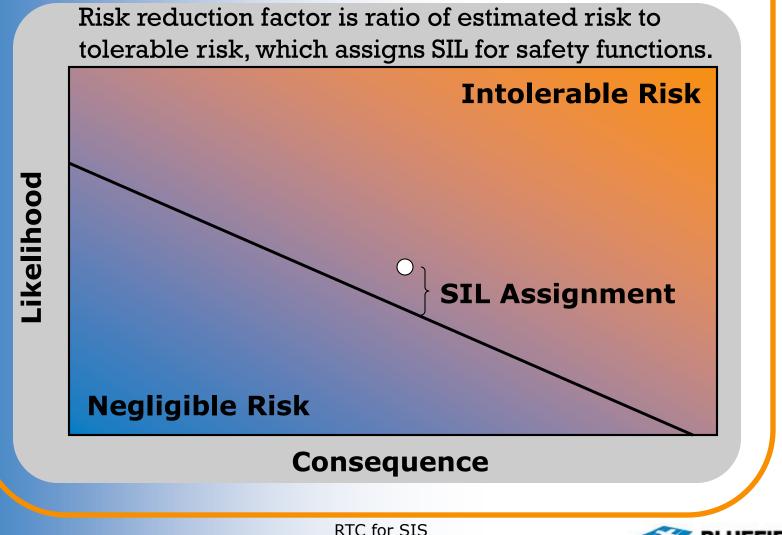
HazOp: Recommendations


- All PHA recommendations must be resolved
- Consider or "Confirm"
 - Consider" because there may be better approaches
 - Consider" still requires resolution and documentation

Confirm when there is not certainty that safeguard is in place; may still not be required


"Perform LOPA" or "Perform QRA"

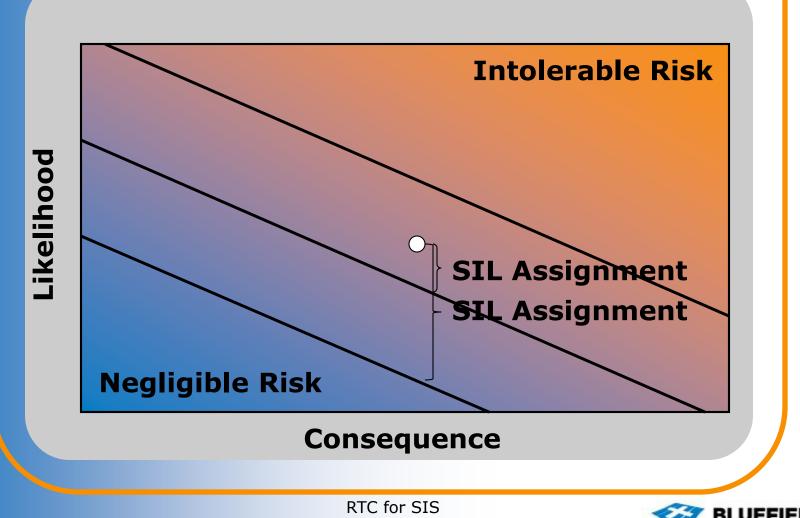

But is the risk tolerable?


Only in comparison to RTC

Only in comparison to RTC

Comparison determines RRF

What is a SIL?


Safety Integrity Level

Safety Integrity	Probability of	Risk Reduction
Level	Failure on Demand (PFD _{AVG}) 10 ⁻⁴ > PFD > 10 ⁻⁵	Factor (RRF)
SIL 4	10 ⁻⁴ > PFD > 10 ⁻⁵	10000 < RRF < 100000
SIL 3	10 ⁻³ > PFD > 10 ⁻⁴	1000 < RRF < 10000
SIL 2	10 ⁻² > PFD > 10 ⁻³	100 < RRF < 1000
SIL 1	10 ⁻¹ > PFD > 10 ⁻²	10 < RRF < 100

SIFs can also have SILs of N/R (not rated), aka SIL 0, SIL A

But what risk tolerance criteria?

No SIS without RTC

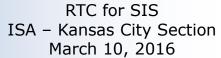
- Safety Instrumented Systems require engineering specifications for risk tolerance criteria before a SIL can be assigned
- SILs must be assigned before a SIS can be designed
- "ZERO RISK" is rhetoric, not an engineering specification

What, me worry?

He is insubordinate to <u>officers</u> and noncoms alike, and is an excellent <u>candidate</u> for court martial or reform school.

Yes, I'm worried!

Safety Instrumented Systems require engineering specifications for Risk Tolerance Criteria before design can begin.


What is your tolerable risk?

As an individual, what do you believe the tolerable risk should be for a workplace?

Imagine a workplace

How great would the mean time between fatalities have to be for you to consider it a safe workplace?

How many people work there?

Calculate the tolerable fatality rate implied by those two assumptions.

Express tolerable risk in terms of fatalities per 100,000 FTEs (200 million hours worked)

Plant A – 1 fatality/1000 years

 Assume that 1 fatality per 1000 years is "safe"
 Exposed workforce ~ 50 workers (FTEs)

(1 fatality / 1,000 years) x (1 year / 50 FTEs) = 1 fatality / 5x10⁴ FTEs = 2 fatalities per 100,000 FTEs

Is that safe?

The Bureau of Labor Statistics reports fatalities rates in units of Deaths per 100,000 FTE (wk-yrs) OR

Deaths per 200 million hours worked

Safest occupations

0.4 – Mathematician

- •0.4 Business/financial
- •0.4 Educator/librarian

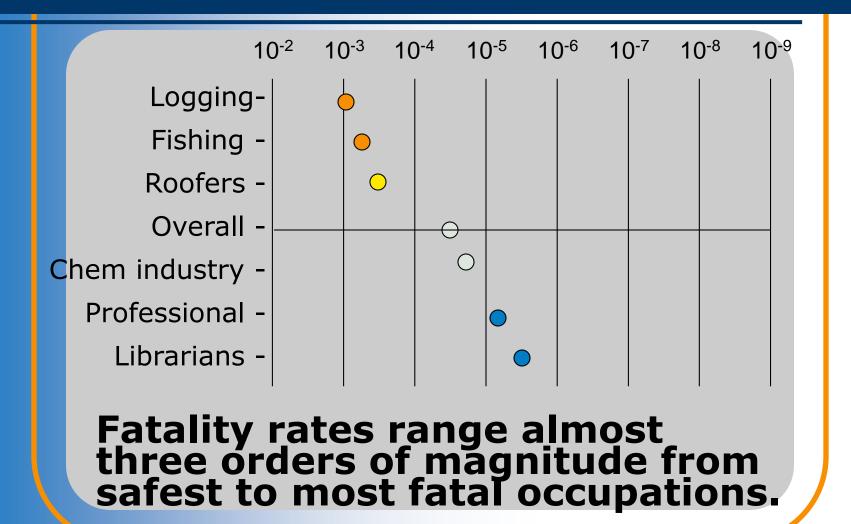
BLS – 2014 Data

http://www.bls.gov/iif/oshwc/cfoi/cfoi_rates_2014hb.pdf

2014 statistics: 4,679 fatalities in the U.S. workplace 3.3 fatalities per 100,000 FTE per 200 million hours worked

BLS – 2014 Data

http://www.bls.gov/iif/oshwc/cfoi/cfch0013.pdf


How does example compare?

Example:

 2.0 fatalities per 100,000 FTEs per 200 million hours worked
 U.S. workplace in 2014:
 3.3 fatalities per 100,000 FTEs per 200 million hours worked

Other industries/occupations?

Not all risk is process risk...

- ***41%** Transportation
- 16% Violent acts
- 15% Falls
- 16% Contact with object
- 3% Fires or explosions
- 9% Exposure to harmful substances or environments
- BLS 2006-2013 average Data –

U.S. workplace

...even in the process industries

- **22%** Transportation
- 13% Violent acts
- 7% Falls
- ***20%** Contact with object
- *****24% Fires or explosions
- 14% Exposure to harmful substances or environments
- BLS 2006-2013 average Data –

U.S. workplace

Allocating overall risk to process

 How would you allocate process risk (in %)?
 It depends on the industry

Process risk – about half of individual risk is process risk

Return to RTC exercise

 Total tolerable risk for individuals

 = 2 x 10⁻⁵ fatalities/yr

 Assume process safety risk accounts for half of all risk
 = 1 x 10⁻⁵ fatalities/yr

Should all process safety risk be allocated to a single process hazard?

Allocating risk to a hazard

Do not allocate all process risk to a single hazard! How much risk should a single hazard represent? Process safety risk $= 1 \times 10^{-5}$ fatalities/yr Single process hazard risk 5% to 20% of process risk Tolerable scenario risk (@ 20%) $= 2 \times 10^{-6}$ fatalities/yr

Tolerable scenario frequency

From example: Tolerable frequency for fatal scenario is 2 x 10⁻⁶ fatalities/yr 1 fatality/event $= 2 \times 10^{-6} \text{ event/yr}$ Compare to typical RTC in the range of 1 x 10⁻⁴ to 1 x 10⁻⁶ Once this value is pinned down, the remaining RTC can be developed



Summary

- SIS projects impose responsibilities on I&E engineers that have nothing to do with instrumentation
- A successful SIS project depends on doing the PHA right—the old ways are no longer sufficient
- A successful SIS project also depends on having RTC; if you don't have them, you must develop them—and you can

